3.2 \(\int \tan ^4(c+d x) (a+i a \tan (c+d x)) \, dx\)

Optimal. Leaf size=83 \[ \frac {i a \tan ^4(c+d x)}{4 d}+\frac {a \tan ^3(c+d x)}{3 d}-\frac {i a \tan ^2(c+d x)}{2 d}-\frac {a \tan (c+d x)}{d}-\frac {i a \log (\cos (c+d x))}{d}+a x \]

[Out]

a*x-I*a*ln(cos(d*x+c))/d-a*tan(d*x+c)/d-1/2*I*a*tan(d*x+c)^2/d+1/3*a*tan(d*x+c)^3/d+1/4*I*a*tan(d*x+c)^4/d

________________________________________________________________________________________

Rubi [A]  time = 0.08, antiderivative size = 83, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 3, integrand size = 22, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.136, Rules used = {3528, 3525, 3475} \[ \frac {i a \tan ^4(c+d x)}{4 d}+\frac {a \tan ^3(c+d x)}{3 d}-\frac {i a \tan ^2(c+d x)}{2 d}-\frac {a \tan (c+d x)}{d}-\frac {i a \log (\cos (c+d x))}{d}+a x \]

Antiderivative was successfully verified.

[In]

Int[Tan[c + d*x]^4*(a + I*a*Tan[c + d*x]),x]

[Out]

a*x - (I*a*Log[Cos[c + d*x]])/d - (a*Tan[c + d*x])/d - ((I/2)*a*Tan[c + d*x]^2)/d + (a*Tan[c + d*x]^3)/(3*d) +
 ((I/4)*a*Tan[c + d*x]^4)/d

Rule 3475

Int[tan[(c_.) + (d_.)*(x_)], x_Symbol] :> -Simp[Log[RemoveContent[Cos[c + d*x], x]]/d, x] /; FreeQ[{c, d}, x]

Rule 3525

Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[(a*c - b
*d)*x, x] + (Dist[b*c + a*d, Int[Tan[e + f*x], x], x] + Simp[(b*d*Tan[e + f*x])/f, x]) /; FreeQ[{a, b, c, d, e
, f}, x] && NeQ[b*c - a*d, 0] && NeQ[b*c + a*d, 0]

Rule 3528

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[(d
*(a + b*Tan[e + f*x])^m)/(f*m), x] + Int[(a + b*Tan[e + f*x])^(m - 1)*Simp[a*c - b*d + (b*c + a*d)*Tan[e + f*x
], x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && GtQ[m, 0]

Rubi steps

\begin {align*} \int \tan ^4(c+d x) (a+i a \tan (c+d x)) \, dx &=\frac {i a \tan ^4(c+d x)}{4 d}+\int \tan ^3(c+d x) (-i a+a \tan (c+d x)) \, dx\\ &=\frac {a \tan ^3(c+d x)}{3 d}+\frac {i a \tan ^4(c+d x)}{4 d}+\int \tan ^2(c+d x) (-a-i a \tan (c+d x)) \, dx\\ &=-\frac {i a \tan ^2(c+d x)}{2 d}+\frac {a \tan ^3(c+d x)}{3 d}+\frac {i a \tan ^4(c+d x)}{4 d}+\int \tan (c+d x) (i a-a \tan (c+d x)) \, dx\\ &=a x-\frac {a \tan (c+d x)}{d}-\frac {i a \tan ^2(c+d x)}{2 d}+\frac {a \tan ^3(c+d x)}{3 d}+\frac {i a \tan ^4(c+d x)}{4 d}+(i a) \int \tan (c+d x) \, dx\\ &=a x-\frac {i a \log (\cos (c+d x))}{d}-\frac {a \tan (c+d x)}{d}-\frac {i a \tan ^2(c+d x)}{2 d}+\frac {a \tan ^3(c+d x)}{3 d}+\frac {i a \tan ^4(c+d x)}{4 d}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.20, size = 81, normalized size = 0.98 \[ \frac {a \tan ^{-1}(\tan (c+d x))}{d}+\frac {a \tan ^3(c+d x)}{3 d}-\frac {a \tan (c+d x)}{d}-\frac {i a \left (-\tan ^4(c+d x)+2 \tan ^2(c+d x)+4 \log (\cos (c+d x))\right )}{4 d} \]

Antiderivative was successfully verified.

[In]

Integrate[Tan[c + d*x]^4*(a + I*a*Tan[c + d*x]),x]

[Out]

(a*ArcTan[Tan[c + d*x]])/d - (a*Tan[c + d*x])/d + (a*Tan[c + d*x]^3)/(3*d) - ((I/4)*a*(4*Log[Cos[c + d*x]] + 2
*Tan[c + d*x]^2 - Tan[c + d*x]^4))/d

________________________________________________________________________________________

fricas [B]  time = 0.42, size = 158, normalized size = 1.90 \[ \frac {-24 i \, a e^{\left (6 i \, d x + 6 i \, c\right )} - 36 i \, a e^{\left (4 i \, d x + 4 i \, c\right )} - 32 i \, a e^{\left (2 i \, d x + 2 i \, c\right )} + {\left (-3 i \, a e^{\left (8 i \, d x + 8 i \, c\right )} - 12 i \, a e^{\left (6 i \, d x + 6 i \, c\right )} - 18 i \, a e^{\left (4 i \, d x + 4 i \, c\right )} - 12 i \, a e^{\left (2 i \, d x + 2 i \, c\right )} - 3 i \, a\right )} \log \left (e^{\left (2 i \, d x + 2 i \, c\right )} + 1\right ) - 8 i \, a}{3 \, {\left (d e^{\left (8 i \, d x + 8 i \, c\right )} + 4 \, d e^{\left (6 i \, d x + 6 i \, c\right )} + 6 \, d e^{\left (4 i \, d x + 4 i \, c\right )} + 4 \, d e^{\left (2 i \, d x + 2 i \, c\right )} + d\right )}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(d*x+c)^4*(a+I*a*tan(d*x+c)),x, algorithm="fricas")

[Out]

1/3*(-24*I*a*e^(6*I*d*x + 6*I*c) - 36*I*a*e^(4*I*d*x + 4*I*c) - 32*I*a*e^(2*I*d*x + 2*I*c) + (-3*I*a*e^(8*I*d*
x + 8*I*c) - 12*I*a*e^(6*I*d*x + 6*I*c) - 18*I*a*e^(4*I*d*x + 4*I*c) - 12*I*a*e^(2*I*d*x + 2*I*c) - 3*I*a)*log
(e^(2*I*d*x + 2*I*c) + 1) - 8*I*a)/(d*e^(8*I*d*x + 8*I*c) + 4*d*e^(6*I*d*x + 6*I*c) + 6*d*e^(4*I*d*x + 4*I*c)
+ 4*d*e^(2*I*d*x + 2*I*c) + d)

________________________________________________________________________________________

giac [B]  time = 2.61, size = 204, normalized size = 2.46 \[ \frac {-3 i \, a e^{\left (8 i \, d x + 8 i \, c\right )} \log \left (e^{\left (2 i \, d x + 2 i \, c\right )} + 1\right ) - 12 i \, a e^{\left (6 i \, d x + 6 i \, c\right )} \log \left (e^{\left (2 i \, d x + 2 i \, c\right )} + 1\right ) - 18 i \, a e^{\left (4 i \, d x + 4 i \, c\right )} \log \left (e^{\left (2 i \, d x + 2 i \, c\right )} + 1\right ) - 12 i \, a e^{\left (2 i \, d x + 2 i \, c\right )} \log \left (e^{\left (2 i \, d x + 2 i \, c\right )} + 1\right ) - 24 i \, a e^{\left (6 i \, d x + 6 i \, c\right )} - 36 i \, a e^{\left (4 i \, d x + 4 i \, c\right )} - 32 i \, a e^{\left (2 i \, d x + 2 i \, c\right )} - 3 i \, a \log \left (e^{\left (2 i \, d x + 2 i \, c\right )} + 1\right ) - 8 i \, a}{3 \, {\left (d e^{\left (8 i \, d x + 8 i \, c\right )} + 4 \, d e^{\left (6 i \, d x + 6 i \, c\right )} + 6 \, d e^{\left (4 i \, d x + 4 i \, c\right )} + 4 \, d e^{\left (2 i \, d x + 2 i \, c\right )} + d\right )}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(d*x+c)^4*(a+I*a*tan(d*x+c)),x, algorithm="giac")

[Out]

1/3*(-3*I*a*e^(8*I*d*x + 8*I*c)*log(e^(2*I*d*x + 2*I*c) + 1) - 12*I*a*e^(6*I*d*x + 6*I*c)*log(e^(2*I*d*x + 2*I
*c) + 1) - 18*I*a*e^(4*I*d*x + 4*I*c)*log(e^(2*I*d*x + 2*I*c) + 1) - 12*I*a*e^(2*I*d*x + 2*I*c)*log(e^(2*I*d*x
 + 2*I*c) + 1) - 24*I*a*e^(6*I*d*x + 6*I*c) - 36*I*a*e^(4*I*d*x + 4*I*c) - 32*I*a*e^(2*I*d*x + 2*I*c) - 3*I*a*
log(e^(2*I*d*x + 2*I*c) + 1) - 8*I*a)/(d*e^(8*I*d*x + 8*I*c) + 4*d*e^(6*I*d*x + 6*I*c) + 6*d*e^(4*I*d*x + 4*I*
c) + 4*d*e^(2*I*d*x + 2*I*c) + d)

________________________________________________________________________________________

maple [A]  time = 0.02, size = 88, normalized size = 1.06 \[ -\frac {a \tan \left (d x +c \right )}{d}+\frac {i a \left (\tan ^{4}\left (d x +c \right )\right )}{4 d}+\frac {a \left (\tan ^{3}\left (d x +c \right )\right )}{3 d}-\frac {i a \left (\tan ^{2}\left (d x +c \right )\right )}{2 d}+\frac {i a \ln \left (1+\tan ^{2}\left (d x +c \right )\right )}{2 d}+\frac {a \arctan \left (\tan \left (d x +c \right )\right )}{d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(tan(d*x+c)^4*(a+I*a*tan(d*x+c)),x)

[Out]

-a*tan(d*x+c)/d+1/4*I*a*tan(d*x+c)^4/d+1/3*a*tan(d*x+c)^3/d-1/2*I*a*tan(d*x+c)^2/d+1/2*I/d*a*ln(1+tan(d*x+c)^2
)+1/d*a*arctan(tan(d*x+c))

________________________________________________________________________________________

maxima [A]  time = 0.90, size = 70, normalized size = 0.84 \[ -\frac {-3 i \, a \tan \left (d x + c\right )^{4} - 4 \, a \tan \left (d x + c\right )^{3} + 6 i \, a \tan \left (d x + c\right )^{2} - 12 \, {\left (d x + c\right )} a - 6 i \, a \log \left (\tan \left (d x + c\right )^{2} + 1\right ) + 12 \, a \tan \left (d x + c\right )}{12 \, d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(d*x+c)^4*(a+I*a*tan(d*x+c)),x, algorithm="maxima")

[Out]

-1/12*(-3*I*a*tan(d*x + c)^4 - 4*a*tan(d*x + c)^3 + 6*I*a*tan(d*x + c)^2 - 12*(d*x + c)*a - 6*I*a*log(tan(d*x
+ c)^2 + 1) + 12*a*tan(d*x + c))/d

________________________________________________________________________________________

mupad [B]  time = 3.71, size = 63, normalized size = 0.76 \[ \frac {\frac {a\,{\mathrm {tan}\left (c+d\,x\right )}^3}{3}-\frac {a\,{\mathrm {tan}\left (c+d\,x\right )}^2\,1{}\mathrm {i}}{2}-a\,\mathrm {tan}\left (c+d\,x\right )+\frac {a\,{\mathrm {tan}\left (c+d\,x\right )}^4\,1{}\mathrm {i}}{4}+a\,\ln \left (\mathrm {tan}\left (c+d\,x\right )+1{}\mathrm {i}\right )\,1{}\mathrm {i}}{d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(tan(c + d*x)^4*(a + a*tan(c + d*x)*1i),x)

[Out]

((a*tan(c + d*x)^3)/3 - (a*tan(c + d*x)^2*1i)/2 - a*tan(c + d*x) + (a*tan(c + d*x)^4*1i)/4 + a*log(tan(c + d*x
) + 1i)*1i)/d

________________________________________________________________________________________

sympy [B]  time = 0.45, size = 168, normalized size = 2.02 \[ - \frac {i a \log {\left (e^{2 i d x} + e^{- 2 i c} \right )}}{d} + \frac {24 i a e^{6 i c} e^{6 i d x} + 36 i a e^{4 i c} e^{4 i d x} + 32 i a e^{2 i c} e^{2 i d x} + 8 i a}{- 3 d e^{8 i c} e^{8 i d x} - 12 d e^{6 i c} e^{6 i d x} - 18 d e^{4 i c} e^{4 i d x} - 12 d e^{2 i c} e^{2 i d x} - 3 d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(d*x+c)**4*(a+I*a*tan(d*x+c)),x)

[Out]

-I*a*log(exp(2*I*d*x) + exp(-2*I*c))/d + (24*I*a*exp(6*I*c)*exp(6*I*d*x) + 36*I*a*exp(4*I*c)*exp(4*I*d*x) + 32
*I*a*exp(2*I*c)*exp(2*I*d*x) + 8*I*a)/(-3*d*exp(8*I*c)*exp(8*I*d*x) - 12*d*exp(6*I*c)*exp(6*I*d*x) - 18*d*exp(
4*I*c)*exp(4*I*d*x) - 12*d*exp(2*I*c)*exp(2*I*d*x) - 3*d)

________________________________________________________________________________________